11428 measured reflections

 $R_{\rm int} = 0.055$

3197 independent reflections

2639 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-*u*-chlorido-bis{chlorido[4-nitro-N-(pyridin-2-ylmethylidene-*kN*)aniline- κN]mercury(II)}

Sadegh Salehzadeh,^a* Saeed Dehghanpour,^b Mehdi Khalaj^{a,c} and Mohammad Rahimishakiba^a

^aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, ^bDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, and ^cDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Buinzahra, Qazvin, Iran Correspondence e-mail: saleh@basu.ac.ir

Received 3 February 2011; accepted 7 February 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.007 Å; R factor = 0.028; wR factor = 0.064; data-to-parameter ratio = 17.7.

In the centrosymmetric dinuclear title complex, [Hg₂Cl₄- $(C_{12}H_9N_3O_2)_2$, the Hg^{II} ion is in a distorted square-pyramidal coordination environment formed by the N atoms of the diimine ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg-Cl bonds is significantly longer than the other.

Related literature

For background to diimine complexes and related structures, see: Dehghanpour et al. (2007); Mahmoudi et al. (2009).

Experimental

Crystal data

$[Hg_2Cl_4(C_{12}H_9N_3O_2)_2]$	V = 1403.22 (8) Å ³
$M_r = 997.42$ Monoclinic, $P2_1/c$	Z = 2 Mo $K\alpha$ radiation
a = 8.9731 (2) Å b = 7.8439 (3) Å	$\mu = 11.35 \text{ mm}^{-1}$ T = 150 K
c = 20.1403 (7) Å $\beta = 98.155 (2)^{\circ}$	$0.18 \times 0.16 \times 0.14 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.115, T_{\max} = 0.222$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	181 parameters
$vR(F^2) = 0.064$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}^{-3}$
3197 reflections	$\Delta \rho_{\rm min} = -1.56 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Hg1-N1	2.323 (4)	Hg1-Cl2	2.5161 (12)
Hg1-Cl1	2.3940 (11)	Hg1-Cl2 ⁱ	2.8068 (11)
Hg1-N2	2.442 (4)	C	

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

We are grateful to Bu-Ali Sina and Alzahra Universities for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2347).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Crvst. E63, m2840.
- Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, m327 [doi:10.1107/S1600536811004703]

Di-µ-chlorido-bis{chlorido[4-nitro-N-(pyridin-2-ylmethylidene- κN)aniline- κN]mercury(II)}

S. Salehzadeh, S. Dehghanpour, M. Khalaj and M. Rahimishakiba

Comment

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour *et al.*, 2007; Mahmoudi *et al.*, 2009), we report herein the crystal structure of the title complex. The title compound was prepared by the reaction of HgCl₂ with (4-nitrophenyl)pyridin-2-ylmethyleneamine.

The molecluar structure of the title complex is shown in Fig. 1. The unique Hg^{II} ion in is in a distorted square pyramidal coordination environment formed by a bis-chelating ligand, two bridging Cl atoms and one terminal Cl atom.

Experimental

The title complex was prepared by the reaction of HgCl₂ (22.7 mg, 0.1 mmol) and (4-nitrophenyl)pyridin-2-ylmethyleneamine (27.2 mg, 0.1 mmol) in 15 ml acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave yellow crystals of the title compound in 60% yield.

Refinement

The H- atom positions were calculated and refined in a riding model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (a) -x + 1, -y + 1, -z + 1.

Di-μ-chlorido-bis{chlorido[4-nitro-N-(pyridin-2-ylmethylidene- κN)aniline-κN]mercury(II)}

Crystal data $[Hg_2Cl_4(C_{12}H_9N_3O_2)_2]$ $M_r = 997.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.9731 (2) Å b = 7.8439 (3) Å

F(000) = 928 $D_x = 2.361 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 6448 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 11.35 \text{ mm}^{-1}$

supplementary materials

c = 20.1403 (7) Å
$\beta = 98.155 \ (2)^{\circ}$
V = 1403.22 (8) Å ³
Z = 2

Data collection

T = 150 KBlock, colourless $0.18 \times 0.16 \times 0.14 \text{ mm}$

Nonius KappaCCD diffractometer	3197 independent reflections
Radiation source: fine-focus sealed tube	2639 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.055$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
ϕ scans and ω scans with κ offsets	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$k = -9 \rightarrow 10$
$T_{\min} = 0.115, \ T_{\max} = 0.222$	$l = -25 \rightarrow 26$
11428 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.064$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0234P)^2 + 1.6835P]$ where $P = (F_o^2 + 2F_c^2)/3$
3197 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
181 parameters	$\Delta \rho_{max} = 0.94 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Hg1	0.641245 (19)	0.62356 (2)	0.448116 (9)	0.02542 (8)

Cl1	0.83299 (13)	0.45830 (16)	0.40698 (7)	0.0314 (3)
Cl2	0.60508 (13)	0.60053 (14)	0.56941 (6)	0.0270 (3)
01	1.0314 (4)	1.2850 (5)	0.72381 (19)	0.0428 (9)
O2	1.1963 (4)	1.0918 (5)	0.7078 (2)	0.0440 (10)
N1	0.5013 (4)	0.7782 (5)	0.36266 (19)	0.0238 (8)
N2	0.6929 (4)	0.9273 (5)	0.4652 (2)	0.0216 (8)
N3	1.0753 (5)	1.1652 (5)	0.6919 (2)	0.0319 (10)
C1	0.4077 (5)	0.7090 (6)	0.3123 (2)	0.0265 (10)
H1A	0.3985	0.5884	0.3101	0.032*
C2	0.3234 (5)	0.8064 (7)	0.2632 (3)	0.0308 (11)
H2A	0.2589	0.7531	0.2277	0.037*
C3	0.3344 (5)	0.9808 (7)	0.2663 (3)	0.0312 (11)
H3A	0.2769	1.0502	0.2335	0.037*
C4	0.4315 (5)	1.0539 (6)	0.3187 (2)	0.0275 (10)
H4A	0.4404	1.1744	0.3222	0.033*
C5	0.5152 (5)	0.9497 (6)	0.3657 (2)	0.0212 (9)
C6	0.6209 (5)	1.0210 (6)	0.4202 (3)	0.0228 (10)
H6A	0.6364	1.1408	0.4221	0.027*
C7	0.7901 (5)	0.9952 (6)	0.5209 (2)	0.0206 (9)
C8	0.7776 (5)	1.1611 (6)	0.5433 (2)	0.0239 (10)
H8A	0.7039	1.2351	0.5203	0.029*
C9	0.8717 (5)	1.2189 (6)	0.5988 (2)	0.0265 (10)
H9A	0.8641	1.3324	0.6145	0.032*
C10	0.9778 (5)	1.1072 (6)	0.6314 (2)	0.0242 (10)
C11	0.9934 (5)	0.9425 (6)	0.6092 (2)	0.0257 (10)
H11A	1.0688	0.8696	0.6316	0.031*
C12	0.8981 (5)	0.8855 (6)	0.5542 (2)	0.0241 (10)
H12A	0.9058	0.7717	0.5388	0.029*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.03088 (12)	0.01758 (11)	0.02789 (12)	0.00384 (7)	0.00446 (8)	0.00096 (8)
Cl1	0.0311 (6)	0.0273 (6)	0.0363 (7)	0.0085 (5)	0.0069 (5)	-0.0012 (5)
Cl2	0.0332 (6)	0.0244 (6)	0.0233 (6)	-0.0052 (4)	0.0035 (5)	-0.0015 (5)
O1	0.037 (2)	0.046 (2)	0.043 (2)	-0.0073 (18)	0.0020 (17)	-0.017 (2)
O2	0.0277 (19)	0.055 (3)	0.045 (2)	0.0031 (17)	-0.0075 (16)	-0.0044 (19)
N1	0.0249 (19)	0.022 (2)	0.025 (2)	0.0021 (16)	0.0057 (16)	0.0018 (17)
N2	0.0210 (18)	0.0192 (19)	0.025 (2)	0.0007 (15)	0.0039 (15)	0.0047 (16)
N3	0.026 (2)	0.037 (3)	0.033 (3)	-0.0090 (18)	0.0047 (18)	-0.003 (2)
C1	0.029 (2)	0.026 (3)	0.024 (3)	-0.003 (2)	0.0052 (19)	0.001 (2)
C2	0.029 (2)	0.035 (3)	0.026 (3)	-0.004 (2)	-0.004 (2)	-0.004 (2)
C3	0.033 (3)	0.036 (3)	0.023 (3)	0.012 (2)	0.000 (2)	0.006 (2)
C4	0.035 (3)	0.021 (2)	0.026 (3)	0.004 (2)	0.003 (2)	0.001 (2)
C5	0.026 (2)	0.021 (2)	0.017 (2)	0.0034 (19)	0.0048 (18)	0.0020 (19)
C6	0.027 (2)	0.013 (2)	0.029 (3)	0.0024 (18)	0.0064 (19)	-0.001 (2)
C7	0.019 (2)	0.019 (2)	0.024 (3)	0.0006 (17)	0.0067 (18)	0.0006 (19)
C8	0.025 (2)	0.022 (2)	0.024 (3)	0.0018 (18)	0.0044 (19)	0.0039 (19)

supplementary materials

C9 C10 C11 C12	0.025 (2) 0.020 (2) 0.024 (2) 0.022 (2)	0.020 (2) 0.026 (3) 0.023 (2) 0.020 (2)	0.035 (3) 0.027 (3) 0.030 (3) 0.031 (3)	-0.0029 (19) -0.0062 (18) 0.004 (2) -0.0005 (18)	0.009 (2) 0.0036 (18) 0.0027 (19) 0.0053 (19)	-0.006 (2) -0.002 (2) 0.004 (2) -0.001 (2)
Geometric para	nators $(\hat{\lambda} \circ)$					
Geometric purun	ielers (A,)					
Hg1—N1		2.323 (4)	C3—0	C4	1	1.392 (7)
Hg1—Cl1		2.3940 (11)	C3—I	H3A	(0.9500
Hg1—N2		2.442 (4)	C4—0	25]	1.388 (6)
Hg1—Cl2		2.5161 (12)	C4—F	14A	(0.9500
Hg1—Cl2 ¹		2.8068 (11)	C5—0	26]	1.457 (6)
Cl2—Hg1 ⁱ		2.8068 (11)	C6—I	H6A	().9500
O1—N3		1.233 (5)	С7—С	28	1	1.387 (6)
O2—N3		1.231 (5)	С7—С	212	1	1.394 (6)
N1—C1		1.337 (6)	C8—0	C9	1	1.380 (7)
N1—C5		1.352 (6)	C8—I	H8A	().9500
N2—C6		1.272 (6)	C9—0	210	1	1.388 (7)
N2—C7		1.423 (6)	C9—I	H9A	(0.9500
N3—C10		1.468 (6)	C10—	-C11		1.381 (6)
C1—C2		1.386 (7)	CII—	-C12		1.375 (7)
CI—HIA		0.9500	CII-	-HIIA	(0.9500
$C_2 = C_3$		1.372(7)	C12—	-H12A	(J.9500
С2—П2А		0.9300				
NI—HgI—CII		111.46 (10)	C4—(C3—H3A		120.7
NI - HgI - N2		/0.5/(13)	C5—C	24—C3		119.6 (5)
N1 Ua1 Cl2		116.47 (9)	C3—(.4—Н4А С4 Ц4А		120.2
NI - HgI - CI2		128.76 (9)	C3—(24—п4А С5 С4		120.2
$H_{\alpha 1} = C_{12}$		119.08 (4) 88.01 (0)	NI—(C_{5}		121.2(4)
N2—ng1—Cl2		84.28 (0)		C5C6		121.2 (4)
NI—HgI—Cl2		04.20 (9)	C4—(0	-	121.3 (4)
Cl1—Hg1—Cl2 ¹		102.07 (4)	N2—0	C6—C5		121.8 (4)
N2—Hg1—Cl2 ¹		139.38 (9)	N2—0	С6—Н6А	1	119.1
Cl2—Hg1—Cl2 ⁱ		82.50 (4)	C5—0	С6—Н6А	1	119.1
Hg1—Cl2—Hg1 ⁱ		97.50 (4)	C8—0	C7—C12	1	120.4 (4)
C1—N1—C5		118.8 (4)	C8—0	C7—N2	1	122.6 (4)
C1—N1—Hg1		124.5 (3)	C12—	-C7—N2	1	117.0 (4)
C5—N1—Hg1		116.7 (3)	С9—С	C8—C7	1	120.2 (4)
C6—N2—C7		122.6 (4)	С9—С	C8—H8A	1	119.9
C6—N2—Hg1		113.3 (3)	С7—С	С8—Н8А	1	119.9
C7—N2—Hg1		124.0 (3)	C8—0	C9—C10	1	118.4 (4)
O2—N3—O1		123.8 (4)	C8—0	С9—Н9А	1	120.8
O2—N3—C10		118.1 (4)	C10—	-С9—Н9А	1	120.8
O1—N3—C10		118.1 (4)	C11—	-C10—C9	1	122.2 (4)
N1—C1—C2		122.6 (5)	C11—	-C10—N3	1	118.9 (4)
N1—C1—H1A		118.7	C9—0	C10—N3	1	119.0 (4)
C2—C1—H1A		118.7	C12—	-C11—C10	1	119.0 (4)

C3—C2—C1	119.2 (5)	C12—C11—H11A	120.5
С3—С2—Н2А	120.4	C10-C11-H11A	120.5
C1—C2—H2A	120.4	C11—C12—C7	119.8 (4)
C2—C3—C4	118.6 (4)	C11—C12—H12A	120.1
С2—С3—НЗА	120.7	C7—C12—H12A	120.1
N1—Hg1—Cl2—Hg1 ⁱ	76.43 (12)	C1—N1—C5—C6	-178.4 (4)
Cl1—Hg1—Cl2—Hg1 ⁱ	-99.66 (5)	Hg1—N1—C5—C6	2.7 (5)
N2—Hg1—Cl2—Hg1 ⁱ	140.20 (9)	C3—C4—C5—N1	-1.8 (7)
Cl2 ⁱ —Hg1—Cl2—Hg1 ⁱ	0.0	C3—C4—C5—C6	178.4 (4)
Cl1—Hg1—N1—C1	68.2 (4)	C7—N2—C6—C5	-176.3 (4)
N2—Hg1—N1—C1	179.9 (4)	Hg1—N2—C6—C5	1.9 (5)
Cl2—Hg1—N1—C1	-108.1 (3)	N1C5	-3.2 (6)
Cl2 ⁱ —Hg1—N1—C1	-32.5 (3)	C4—C5—C6—N2	176.7 (4)
Cl1—Hg1—N1—C5	-112.9 (3)	C6—N2—C7—C8	22.2 (7)
N2—Hg1—N1—C5	-1.3 (3)	Hg1—N2—C7—C8	-155.9 (3)
Cl2—Hg1—N1—C5	70.7 (3)	C6—N2—C7—C12	-159.7 (4)
Cl2 ⁱ —Hg1—N1—C5	146.3 (3)	Hg1—N2—C7—C12	22.3 (5)
N1—Hg1—N2—C6	-0.3 (3)	C12—C7—C8—C9	-0.2 (7)
Cl1—Hg1—N2—C6	104.6 (3)	N2—C7—C8—C9	177.9 (4)
Cl2—Hg1—N2—C6	-132.5 (3)	C7—C8—C9—C10	-0.2 (7)
Cl2 ⁱ —Hg1—N2—C6	-55.3 (4)	C8—C9—C10—C11	1.2 (7)
N1—Hg1—N2—C7	177.8 (3)	C8—C9—C10—N3	-177.9 (4)
Cl1—Hg1—N2—C7	-77.2 (3)	O2-N3-C10-C11	23.7 (6)
Cl2—Hg1—N2—C7	45.7 (3)	O1—N3—C10—C11	-156.4 (4)
Cl2 ⁱ —Hg1—N2—C7	122.8 (3)	O2—N3—C10—C9	-157.1 (4)
C5—N1—C1—C2	-0.4 (7)	O1—N3—C10—C9	22.7 (6)
Hg1—N1—C1—C2	178.4 (3)	C9—C10—C11—C12	-1.8 (7)
N1—C1—C2—C3	-0.8 (7)	N3-C10-C11-C12	177.3 (4)
C1—C2—C3—C4	0.7 (7)	C10-C11-C12-C7	1.4 (7)
C2—C3—C4—C5	0.5 (7)	C8—C7—C12—C11	-0.5 (7)
C1—N1—C5—C4	1.7 (6)	N2-C7-C12-C11	-178.7 (4)
Hg1—N1—C5—C4	-177.2 (3)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Fig. 1